Using Association Rule Mining for Phenotype Extraction from Electronic Health Records

نویسندگان

  • Dingcheng Li
  • Gyorgy Simon
  • Christopher G. Chute
  • Jyotishman Pathak
چکیده

The increasing adoption of electronic health records (EHRs) due to Meaningful Use is providing unprecedented opportunities to enable secondary use of EHR data. Significant emphasis is being given to the development of algorithms and methods for phenotype extraction from EHRs to facilitate population-based studies for clinical and translational research. While preliminary work has shown demonstrable progress, it is becoming increasingly clear that developing, implementing and testing phenotyping algorithms is a time- and resource-intensive process. To this end, in this manuscript we propose an efficient machine learning technique-distributional associational rule mining (ARM)-for semi-automatic modeling of phenotyping algorithms. ARM provides a highly efficient and robust framework for discovering the most predictive set of phenotype definition criteria and rules from large datasets, and compared to other machine learning techniques, such as logistic regression and support vector machines, our preliminary results indicate not only significantly improved performance, but also generation of rule patterns that are amenable to human interpretation .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

A review of approaches to identifying patient phenotype cohorts using electronic health records

OBJECTIVE To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. MATERIALS AND METHODS We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Jo...

متن کامل

Comparing Medical Comorbidities Between Opioid and Cocaine Users: A Data Mining Approach

Background: Prescription drug monitoring programs (PDMPs) are instrumental in controlling opioid misuse,but opioid users have increasingly shifted to cocaine, creating a different set of medical problems. Whileopioid use results in multiple medical comorbidities, findings of the existing studies reported singlecomorbidities rather...

متن کامل

Semi-Supervised Learning of the Electronic Health Record with Denoising Autoencoders for Phenotype Stratification

Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these records provides opportunities to extract electronic phenotypes that can be paired with genetic data to identify genes underlying common human diseases. This task remains challengin...

متن کامل

Clustered Collaborative Filtering Approach for Distributed Data Mining on Electronic Health Records

Distributed Data Mining (DDM) has become one of the promising areas of Data Mining. DDM techniques include classifier approach and agent-approach. Classifier approach plays a vital role in mining distributed data, having homogeneous and heterogeneous approaches depend on data sites. Homogeneous classifier approach involves ensemble learning, distributed association rule mining, meta-learning an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013